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ABSTRACT

Forecasters often use the term “dprog/dt” to discuss changes in numerical forecasts verifying

at the same time. For example, if yesterday’s 48-h temperature forecast was warm and today’s

24-h forecast is cooler,dprog/dt is negative. Some forecasters may also think ofdprog/dt as a

general rule of thumb for how to improve upon the latest model forecast. Given a set of lagged-

average forecasts from the same model all verifying at the same time, this rule of thumb sug-

gests that if the forecasts show a trend, this trend is more likely than not to continue and thus

provide useful information for correcting the most recent forecast. Forecasters may also note

the amount of continuity of forecasts as a judge of the magnitude of the error in the most recent

forecast.

To examine this rule of thumb, a 23-year record of forecasts are generated from a T62 version

of the medium-range forecast model used at the National Centers for Environmental Prediction.

Forecasts are initialized from reanalysis data, and January-February-March forecasts are exam-

ined for selected locations. The validity of “dprog/dt” is assessed using 850 hPa temperature

forecasts. Extrapolation of forecast trends are shown to have little forecast value. Also, there is

only a small amount of information on forecast accuracy from the amount of discrepancy be-

tween short-term lagged-average forecasts.
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1. INTRODUCTION

Numerical weather forecast models grow increasingly sophisticated with each passing year.

Unfortunately, the quest for a model free of systematic error remains elusive. Weather forecast-

ers often develop rules of thumb to adjust the guidance produced by numerical weather predic-

tion models. Nonetheless, human forecasters are fallible; their rules may appear to be appropri-

ate from a relatively small sample of recent forecasts. However, their ability to validate their al-

gorithms with a longer time series of forecasts is complicated by the frequent coding changes to

the weather forecast models; as soon as they feel they are starting to understand the bias of one

version of the model, that model is changed and the learning process must start over.

Given these model changes, a rule of thumb that can be applied regardless of the specific

forecast model would be especially valuable. One potentially fruitful avenue for improving upon

the latest numerical guidance is to consider multiple forecasts from the same model valid at the

same time. Suchlagged-average forecasts (“LAFs”; Hoffman and Kalnay 1983, Dalcher et al.

1988) have previously been shown to be useful for improving the skill of medium-range fore-

casts. For shorter-range forecasts, an evaluation of trends in lagged-average forecasts is often re-

ferred to as “dprog/dt.” Thus, one may see in forecast discussions that “temperaturedprog/dt

is negative,” meaning that more recent numerical forecasts are colder than older ones. Some

forecasters may also viewdprog/dt as a handy rule of thumb: if forecasts are trending colder,

does that not suggest that the most likely actual state is yet somewhat colder than the most re-

cent forecast? Forecasters may also note the amount of continuity of these lagged-average fore-

casts as a judge of the likely error in the most recent forecast. Lagged-average forecasts that

have been consistent are judged to be more accurate than ones that substantially differ from each

other.

Is “dprog/dt” as a rule of thumb justified by the data? Answering this question in a sta-

tistically rigorous manner has been complicated by the unavailability of a long time series of

forecasts produced by the same forecast model. At the Climate Diagnostics Center (CDC), we

have initiated a “re-forecasting” project to study whether significant improvements to forecast
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skill are possible if a very long time series of forecasts are available from a frozen model, where

the model algorithms are unchanged throughout the experiment. Using this large training data

set, systematic model errors can be detected, and current forecasts using the same frozen model

can be adjusted for these errors. We have thus far generated 23 years of medium-range weather

forecasts from a T-62 resolution version of the National Center for Environmental Prediction’s

(NCEP’s) medium-range forecast (MRF) model (Kanamitsu 1989, Kanamitsu et al. 1991, Ca-

plan et al. 1997, Wu et al. 1997). A single control forecast has been run forward for 2 weeks

once every day from 0000 UTC initial conditions using the NCEP-NCAR reanalyses (Kalnay et

al. 1996) from 1979 to 2001. Over the next year, we expect to complete a 15-member ensem-

ble of forecasts over the 23 years. This data set will primarily be used for demonstrating how

medium-range forecasts can be improved. However, it can also be useful for a range of ancillary

applications, such as the validation of rules of thumb likedprog/dt.

Ideally, the most appropriate data to test would be the ones forecasters are now using. Hence,

if forecasters are applyingdprog/dt to 12, 24, and 36-h forecasts from the state-of-the-art fore-

cast model at NCEP, a model such as the Eta model (Black 1994, Rogers et al. 1995, 1996, Mesinger

1996) would be the best to test. However, the Eta model is frequently modified and improved at

NCEP, so a long history of forecasts using the same model configuration is not available. Still,

dprog/dt is generally thought of as being a tool which may be used with different numerical

models, so an assessment of its validity with a simpler model should provide valuable guidance

about whether it should be used with current operational forecast models.

The rest of the note consists of a brief examination of the skill of this forecast data set, an

examination of how much improvement can be obtained through lagged-average regression ap-

proaches, and an examination of the validity of thedprog/dt rules of thumb.

2. RESULTS

Our data set will consist of 1, 2, and 3-day forecasts of 850 hPa temperature from January-

March 1979-2001. Sea-level pressure forecasts were also examined but will not be shown here;
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the results were both qualitatively and qualitatively similar. Associated NCEP-NCAR reanaly-

sis will be used as verification data. For simplicity, we will examine the validity ofdprog/dt at

a limited set of locations in the U.S.. These locations are the grid points nearest to Seattle, WA,

Los Angeles, CA, Denver, CO, Minneapolis, MN, San Antonio, TX, Columbus, OH, Tampa, FL,

Cape Hatteras, NC, and Portland, ME. To minimize the direct effect of forecast bias and the an-

nual cycle upon the analysis, a 31-day running mean climatology of the analysis state and the

mean forecast state is computed for each of these locations using the full 23-year data set. These

running means are subtracted from the analysis and forecasts prior to the subsequent examina-

tion.

a. Validity of extrapolating forecast trends

First consider the overall error statistics of these forecasts. Table 1 provides the root mean-

square (RMS) error characteristics of the forecasts at the nine locations as a function of lead

time.

As a baseline for evaluating the value of forecast trends, we perform a simple univariate re-

gression to predict the 850 hPa temperature provided with just the 24-h forecast temperature.

For this regression, a cross-validation approach is used (Wilks 1995). The regression constants

are separately calculated for each of the 23 years, using the remaining 22 years as training data.

DenoteTpred as the predicted 850 hPa temperature (deviation from observed climatology) and

T24 the 24-h forecast (deviation from forecast climatology). The regression equation is of the

form

Tpred = �0 + �1� T24 (1)

The RMS error of this univariate regression is also displayed in column 5 of Table 1. The errors

are consistently slightly lower than those from the 24-h forecast itself.

If there is value in the trend in lagged-average forecasts, inclusion of these trends ought to

significantly improve the accuracy of these forecasts. Accordingly, denote (T48� T24) the trend

between 48 h and 24 h lagged average forecasts valid at the same time, and similarly for (T72�
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T48). We then perform a cross-validated multivariate linear regression of the form

Tpred = �0 + �1� T24 + �2� (T48� T24) + �3� (T72� T48) (2)

The RMS errors of this multivariate regression are also displayed in the last column of Table 1.

The inclusion of additional information on forecast trends makes only a very small improvement

to the skill of the forecasts; on average, only 0.04 K. If one examines the distribution of regres-

sion coefficients produced via the cross-validation (not shown), the distribution of�2 and�3 typ-

ically overlap zero, indicating little confidence that the optimal values for these coefficients are

significantly different from zero.

Examining a scatterplot of 48-24 h forecast trends and their relationship to the difference

between the 24 h forecast and the analyzed state, the reason for the limited value of extrapolat-

ing trends is more apparent. Figure 1 provides this scatterplot; the difference in temperatures

between 48 and 24-h forecasts valid at the same time is plotted along the x-axis, the difference

between 24-h forecasts and the verification along the y-axis. There is little relationship between

the forecast trend and the 24-h forecast error, as noted by the correlation coefficients near zero

(plotted in the upper-left corner of each panel). The correlations were generally smaller yet if

the trend was evaluated between 72 h and 24 h.

b. Estimating forecast skill from consistency

Is the consistency of forecasts useful for inferring something about the accuracy of the most

recent forecast? Figure 2 provides a scatterplot of the absolute difference between 48 and 24

h forecasts (x axis) and the mean absolute error (MAE) of the 24 h forecasts (y axis). Ideally,

the larger the discrepancy between 48 and 24 h forecasts, the larger the typical MAE should

be. LetF denote the absolute difference between 48 and 24 h forecasts. On Fig 2, we also plot

MAE(F � 1),MAE(1< F � 3), andMAE(3< F ), where the overbar denotes the average

over all forecasts. Note that there is typically very little difference between the average MAEs

of forecasts with large discrepancies and small discrepancies.
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3. CONCLUSIONS

dprog/dt has been shown to have little validity as a forecast rule of thumb. Temperature

trends with this model should not be extrapolated, and there is only a little value in the amount

of discrepancy in lagged average forecasts for predicting the magnitude of forecast error.

Is this apparent lack of improvement a consequence of using this particular model? While

rules of thumb are often model-dependent, this particular rule seems to be applied regardless of

the model. Following this same reasoning,dprog/dt should be considered useless for other fore-

cast models until and unless a careful validation demonstrates its utility.

There are demonstrably valuable techniques for estimating forecast uncertainty and improv-

ing the skill from a single deterministic forecast. One such technique is commonly referred to

asensemble forecasting (Toth and Kalnay 1993, 1997; Molteni et al. 1996; Houtekamer et al.

1996). There is a smaller body of literature on the usefulness of ensembles for shorter-range

forecasts. See Brooks et al. (1992) for a motivation for short-range ensemble forecasting and

Hamill et al. (2000), for a literature review. There are many challenging problems that need to

be addressed to improve these forecasts, but such data sets should be more useful for evaluating

the uncertainty of shorter-range forecasts. Readers who may have useddprog/dt but are looking

for a more theoretically justifiable alternative are encouraged to consider the information from

these ensembles.
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FIGURE CAPTIONS

Figure 1. Validity ofdprog/dt for various locations. Plotted on x-axis in each panel are the 23

years� 90 days of 850 hPa temperature differences between 48-h and 24-h forecasts valid

at the same time. On the y-axis are differences between the 24-h forecast and the verifica-

tion. Correlation coefficient plotted in upper-left corner.

Figure 2. Mean absolute error (MAE) of 24-h 850 hPa temperature forecasts (y-axis) and their

relationship to the absolute difference between 48-h and 24-h temperature forecasts (x-axis,

forecasts valid at the same time). Horizontal lines denote the average MAE for cases when

the absolute difference was less than 1 C, between 1 and 3 C, and greater than 3 C.
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Figure 2. Mean absolute error (MAE) of 24-h 850 hPa temperature forecasts (y-axis) and their

relationship to the absolute difference between 48-h and 24-h temperature forecasts (x-axis,

forecasts valid at the same time). Horizontal lines denote the average MAE for cases when

the absolute difference was less than 1 C, between 1 and 3 C, and greater than 3 C.
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Table 1. 850 hPa RMS temperature errors (degrees C) for selected locations. First column de-

noted the location; columns 2, 3, and 4 denote the RMS errors of 24, 48, and 72 h forecasts,

respectively. Column 5 indicated the RMS error of a linear regression forecast with one pre-

dictor (24-h 850 hPa temperature), and column 6 the error of a multivariate linear regression

forecast with 3 predictors (24-h 850 hPa temperature, 48-24 h difference, and 72-48 h differ-

ence).

24-h RMSE 48-h RMSE 72-h RMSE Regr1 RMSE Regr3 RMSE

Seattle, WA 1.36 2.01 2.60 1.31 1.26

Denver, CO 2.43 3.17 4.01 2.22 2.16

Los Angeles, CA 1.64 2.19 2.71 1.33 1.29

Minneapolis, MN 1.57 2.68 3.79 1.53 1.49

Columbus, OH 1.39 2.43 3.53 1.36 1.34

San Antonio, TX 1.80 2.90 3.82 1.75 1.69

Portland, ME 1.59 2.51 3.67 1.56 1.51

Cape Hatteras, NC 1.39 2.25 3.56 1.35 1.34

Tampa, FL 1.27 1.87 2.62 1.21 1.18
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